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Abstract

This reports describes extensions of DEDICOM (DEcomposition into DIrectional
COMponents) data models [3] that incorporate bound and linear constraints. The
main purpose of these extensions is to investigate the use of improved data models for
unsupervised part-of-speech tagging, as described by Chew et al. [2]. In that work, a
single domain, two-way DEDICOM model was computed on a matrix of bigram fre-
quencies of tokens in a corpus and used to identify parts-of-speech as an unsupervised
approach to that problem. An open problem identified in that work was the com-
putation of a DEDICOM model that more closely resembled the matrices used in a
Hidden Markov Model (HMM), specifically through post-processing of the DEDICOM
factor matrices. The work reported here consists of the description of several models
that aim to provide a direct solution to that problem and a way to fit those models.
The approach taken here is to incorporate the model requirements as bound and lin-
ear constrains into the DEDICOM model directly and solve the data fitting problem
as a constrained optimization problem. This is in contrast to the typical approaches
in the literature, where the DEDICOM model is fit using unconstrained optimization
approaches, and model requirements are satisfied as a post-processing step.
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1 Notation

In this report, we use the following conventions for notation. Matrices are denoted as bolded
capital letters, e.g., A. Scalar matrix elements are denoted in capital letters with sub-
scripts referencing row and column indices, respectively, e.g., A;; is the element of A in
row ¢ and column j. The Frobenius norm of a matrix is denoted as ||-|| and defined as

> oicy 21 |Aij|? for a matrix A € R™". Column-stochastic (row-stochastic) matrices

are those whose columns (rows) sum to 1. Doubly stochastic matrices have columns and
rows that sum to 1.



2 Description of the DEDICOM Models

The DEDICOM model was originally developed to identify latent factors contributing to
asymmetric relationships amongst a group of individuals [3]. In that work, the relationships
consisted of how much person ¢ liked person j, denoted as Xj;, and all ratings were cap-
tured in a data matrix X. The goal in that original work was to identify the underlying
relationships described at “higher levels” (i.e., latent factors) than those observed (liking
ratings). Since that original work, there have been many uses of the DEDICOM model to
identify latent factors for asymmetric relational data. Below we present the original model
and several extensions that incorporate constraints on the latent factors that we propose
may help identify the relationships in different ways.

2.1 Original DEDICOM Model

Given a data matrix X € R™*" that describes asymmetric relations between n objects and
k < n, the single domain, two-way DEDICOM model is a latent factor model of the form

X =ARAT +E (1)
where A € R™** describes the relationships between the objects and latent factors, R € R*¥*¥

describes the relationships between the latent factors, and E € R™*™ accounts for the errors
in the model.

These models are often fit by finding the best approximation
X ~ ARA” (2)
by solving the following minimization problem
. . T2
min |X —ARAT|, . (3)

Note that there are no constraints imposed on the factors A and R in this form of the model.

This is the model employed in the work of Chew et al. [2] and used as the basis for an
unsupervised approach to part-of-speech tagging.

2.2 Nonnegative DEDICOM Model

DEDICOM is often applied to nonnegative data (ratings, counts, affinities, etc.), yet nothing
in the original model requires the latent factors to be nonnegative. To aid in interpreting
these model factors, one can include nonnegativity constraints on the DEDICOM factor
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matrices by solving the following problem

min [ X — ARAT|[; (4)
s.t. Aij Z 0
R;>0.

The use of nonnegative DEDICOM models has been shown to improve interpretability
of the latent factors in analyzing relationships of senders and recipients of email messages

[1].

2.3 DEDICOM Model with Stochastic Factors

One of the goals of the work reported here was to extend the models identified in the part-of-
speech work by Chew et al. [2] by incorporating constraints directly into the model formula-
tion. As mentioned above, the relationship between the DEDICOM model and HMMs was
established in that work. Specifically, a DEDICOM model with column-stochastic A and
row-stochastic R approximate the emission and transition probability matrices, respectively,
of a k-state HMM. Incorporating these constraints into the model, we get the following
problem

win X - ARAT|? 5)
s.t. ZA” =1 \V/j € {]_, ,l{?}
=1

> Ry=1 Vie{l,.. k}
j=1
Ai; >0

In [2], satisfaction of the constraints above was achieved by normalizing the columns
and rows of solution factors A and R, respectively, for an unconstrained version of this
formulation.

2.4 DEDICOM Model with Fully Stochastic Factors

Another goal of the work reported here was to implement the model identified as an open
problem in the part-of-speech work by Chew et al. [2]. Specifically, a DEDICOM model
with column-stochastic A and doubly-stochastic R would approximate the emission and
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transition probability matrices, respectively, of a k-state HMM better than the model in
Section 2.3. Incorporating these constraints into the model, we get the following problem

win [ X - ARA[? ©)
s.t. ZAU =1 VJ S {1, ,k’}

i=1

Y Ryj=1 Vie{l,..k}

j=1

ZRZ']‘ =1 V) € {1, ,k’}
1=1

A”ZO

The original suggestion in [2] was to use Sinkhorn—-Knopp diagonalization [7] of R as
a post-processing step of the DEDICOM model fit, but the model above incorporates the

stochastic matrix constraints directly into the model.

2.5 Weak DEDICOM Model with Stochastic Factors

In the original DEDICOM work [3], the notion of a weak model was introduced, when an
extra factor, B, was used to allow for relationships between objects from different domains.
Combining the weak DEDICOM model with the constraints of stochastic factor matrices,

we get the following problem

win X - ARBY M
i=1

> Ry=1 Vie{l,.. bk}
j=1

A”ZO
R”ZO

This model will compute approximations to the HMM probability matrices, with enough
degrees of freedom in the model to capture the count information accurately in the factor
B, while allowing for satisfaction of the stochastic constraints on the factors A and R.



3 Fitting the DEDICOM Models

For the work performed by Chew et al. [2] and Bader et al. [1], MATLAB was used for the
data fitting of the models in (3) and (4), respectively. The former used an alternating least
squares approach, whereas the latter used a multiplicative update approach that is often
employed in nonnegative matrix factorization. One of the goals of the work reported here
was to experiment with different constraints added to the original DEDICOM model. There
exists previous efforts attempting to address DEDICOM modeling under specific constraints
[6, 8], but to our knowledge no general framework for exploring constrained DEDICOM
models exists. Thus, we explored the use of the Pyomo modeling framework [5] for model
specification and data fitting, as this framework allows for rapid prototyping of model for-
mulations and incorporation of various constraints without the need to implement solvers
specific to each new model.

For the models described above, we prototyped each model in Pyomo and used the
IPOPT solver to fit the models to data. The data used in developing the DEDICOM models
above is a subset of the car data example prepared by Harshman et al. [4] to demonstrate
the use of DEDICOM in market analysis applications. The specific subset of data used is
presented in Appendix A. We note some of the models failed to converge to a good fit, and
this may be due to infeasability issues associated with the addition of the constraints. See
Appendices B-E for example output from the runs on the car data for each of the models
described above. These are only example runs, as each run uses a different starting point
for fitting the model via optimization. Although this has not been proven, the empirical
evidence from our experiments indicate that some of the models may not be feasible. More
work is needed to better understand these constraints from an optimization perspective.



4 Conclusions and Future Work

This report identifies several variants of the DEDICOM model that may be useful for unsu-
pervised part-of-speech tagging. Using the Pyomo modeling framework, we have identified
which of the models may have feasible solutions when fitting the models, as identified empir-
ically using a small data set. Several challenges have been identified throughout this work,
but there is promise in some of the results of these models.

One of the challenges in working with Pyomo is that the interface does not provide for
efficient sparse computational kernels. For the problem of part-of-speech tagging, where
the data matrix is very sparse, containing bigram frequencies of tokens in a text corpus,
overcoming this challenge is crucial. We have been in contact with the Pyomo developers,
who have indicated that such a capability will be made available in an upcoming release
of Pyomo. We will continue to pursue the incorporation of this capability and identify
improvements in efficiency as a result. In order to address much larger data problems than
were used in our experiments, these capabilities will have to be included in Pyomo, or an
alternative approach will need to be developed.

Another challenge that was not addressed in this work is the applicability of the various
models to the problem of part-of-speech tagging. The focus of the work reported here was
on modeling and data fitting, but whether any one of these models will help improve part-
of-speech tagging remains to be seen. To that end, metrics for assessing the utility of a
particular model will need to be developed. The metrics used by Chew et al. [2] required a
subject matter expert.
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A Car Buying Data Set

X =1

3762 4216 3088 3387 4021 3523 4718 3487 4411 4116
4618 5164 3842 4183 4899 4267 5822 4233 5429 5114
3220 3692 2751 2989 3466 3011 4138 3010 3918 3671
3600 4078 3034 3301 3849 3349 4582 3335 4307 4044
4336 4806 3553 3882 4587 4008 5416 3961 5025 4727
3844 4222 3116 3409 4047 3541 4766 3489 4397 4142
4940 5588 4144 4516 5284 4604 6272 4580 5892 5524
3868 4266 3163 3452 4075 3558 4820 3513 4457 4205
4900 5522 4131 4484 5211 4526 6228 4505 5833 5501
4350 4976 3713 4032 4673 4058 5584 4055 5279 4953
1;
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B Results of the Nonnegative DEDICOM Model

Number of Iteratioms....: 104

Objective...............: 1.0654187181450950e-21 1.3364612400412071e-19
Constraint violatiomn....: 1.8189894035458565e-12 1.8189894035458565e-12
Overall NLP error.......: 2.5059039427241684e-09 3.1434059057531967e-07
Number of objective function evaluations = 114

Number of objective gradient evaluations = 75

Number of equality constraint evaluations = 114

Number of inequality constraint evaluations =0

Total CPU secs in IPOPT (w/o function evaluations) = 0.126

Total CPU secs in NLP function evaluations 0.020

EXIT: Optimal Solution Found.

A=

59949 .45 26854.16 32991.50
40560.32 47601.66 51364.50
33291.56 42876.10 24946.77
35786.95 42030.81 33427.73
46872.71 34730.72 50036.85
41212.55 25817.38 48439.88
55697.63 53402.68 44749.85
35117.58 31426.90 48792.65
34247.94 60472.61 52692.16
41229.70 58205.57 35999.58
1;

R=1[

2.29e-07 1.78e-07 2.530e-07
2.24e-07 4.08e-07 1.985e-07
4.40e-07 2.24e-07 2.292e-07
1;
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C Results of the DEDICOM Model with Stochastic

Factors

Number of Iteratioms....: 20000

(scaled) (unscaled)
Objective...............¢: 1.4997190149302384e+07 1.8812475323284910e+09
Constraint violatiomn....: 1.1148821810451366e+01 1.1148821810451366e+01
Overall NLP error.......: 8.9357233256128961e+02 1.1208971339648817e+05
Number of objective function evaluations = 38252
Number of objective gradient evaluations = 18848
Number of equality constraint evaluations = 38253
Number of inequality constraint evaluations =0
Total CPU secs in IPOPT (w/o function evaluations) = 21.673
Total CPU secs in NLP function evaluations = 5.826

EXIT: Maximum Number of Iterations Exceeded.

A=

0.33 3.00 0.00
1.43 1.20 0.26
0.42 0.00 0.00
0.23 0.00 0.10
0.97 0.00 0.47
0.37 0.17 0.00
1.92 0.00 0.92
0.34 0.12 0.13
1.86 0.20 0.61
1.21 0.11 0.55
1;

R=1[

11.61 2.78 11.03
0.00 0.03 0.00
0.00 0.00 0.00
1;
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D DEDICOM Model with Fully Stochastic Factors

Number of Iteratiomns....: 20000

Objective
Constraint violation....: 1.7472939985166665e+01
Overall NLP error.......: 1.3889493027115387e+02

Number
Number
Number
Number

of
of
of
of

Total CPU
Total CPU

(scaled)
B 1.5100312417665865e+07

objective function evaluations
objective gradient evaluations

equality constraint evaluations
inequality constraint evaluations

secs in IPOPT (w/o function evaluations)
secs in NLP function evaluations

EXIT: Maximum Number of Iterations Exceeded.

O O~ ~ |
O N o N
m

O = = =
© = N O;

H O O O OO OO O O O =
- =
- e}
_ B, O P, OFr WO RFrOo

-

.14
.20
.00
.00
.02
.00
.87
.04
.66
.23

.12
.60
.02

.07
.93
.00
.00
.00
.00
.27
.07
.17
.00

O O O O O O O o oo

0.03

15

(unscaled)
1.8941831896720061e+09
1.7472939985166665e+01
1.7422980053213541e+04

28151
18946

= 28155

0
21.371
5.625



E Weak DEDICOM Model with Stochastic Factors

Number of Iteratioms....: 1408

(scaled) (unscaled)
Objective...............¢ 2.8227071452245087e-06 3.5408038429696236e-04
Dual infeasibility......: 5.2126351172678061e-07 6.5387294911007360e-05
Constraint violation....: 5.2750692702829838e-11 5.2750692702829838e-11
Complementarity.........: 2.5059035596800618e-09 3.1434054252626692e-07
Overall NLP error.......: 5.2126351172678061e-07 6.5387294911007360e-05
Number of objective function evaluations = 1497
Number of objective gradient evaluations = 1225
Number of equality constraint evaluations = 1497
Number of inequality constraint evaluations =0
Number of equality constraint Jacobian evaluations = 1410
Number of inequality constraint Jacobian evaluations = 0
Number of Lagrangian Hessian evaluations = 1408
Total CPU secs in IPOPT (w/o function evaluations) = 2.643
Total CPU secs in NLP function evaluations = 0.391

EXIT: Solved To Acceptable Level.

A=

0.11 0.09 0.06
0.11 0.10 0.11
0.05 0.09 0.08
0.07 0.09 0.09
0.12 0.08 0.09
0.11 0.06 0.08
0.11 0.12 0.11
0.10 0.07 0.09
0.09 0.12 0.14
0.07 0.12 0.11
1;

R=1[

0.68 0.10 0.21
0.65 0.03 0.30
0.78 0.03 0.18
1;

B =[

12093.96 69270.78 5427.89
8023.23 46380.53 30469.32

16



9240.
8600.
8018.
5915.
12865.
5216.
8028.
11408.

1;

90
25
27
20
90
88
80
23

20222.
30810.
62998.
63186.
52032.
52171.
29762.
25016.

90
27
07
25
96
48
18
69

16208.
19938.
22998.
21245.
22772.
25643.
37938.
24760.

16
38
48
36
32
13
46
31
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